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A recently proposed consistent Bhatnagar-Gross-Krook-type approach for reversible bimolecular chemical
reactions, well suited to deal with collision dominated gas mixtures in which mechanical and chemical relax-
ation times are of the same order of magnitude �fast reactions�, is discussed. The model recovers essential
features of the chemical process such as mass action law at equilibrium and reactive H theorem. The hydro-
dynamic limit, at both Euler and Navier-Stokes levels, is derived by a Chapman-Enskog procedure, in terms of
the relevant hydrodynamic variables, and compared to the corresponding limits holding in the nonreactive and
in the slowly reactive cases. In particular, results show that reactive corrections to transport coefficients cannot
be neglected for fast reactions.
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I. INTRODUCTION

Kinetic approaches to chemically reacting gas mixtures
are gaining interest in the scientific literature for several rea-
sons, and a crucial motivation is the fact that they allow a
rigorous derivation and justification for the most common
macroscopic descriptions used in the hydrodynamic regime
�1,2�. On the other hand, nonlinear chemical collision inte-
grals of Boltzmann type have been proposed in a recent past
at various different levels �3–6�. We shall restrict here for
simplicity to the easiest one �3�, which ignores nontransla-
tional degrees of freedom, yet capturing the essentials of the
reactive encounters. Such integral operators are definitely
awkward to manage and simpler approximate models would
be useful for practical applications. Relaxation time approxi-
mations of the type proposed by Bhatnagar, Gross, and
Krook �7� and by Welander �8� �usually denoted as BGK
models� seem to be the first natural candidates in that direc-
tion. In standard one-species gas dynamics such models pre-
scribe relaxation toward a local equilibrium with a strength
determined by a suitable characteristic time. But the proce-
dure must be carefully devised in order to avoid well-known
drawbacks which arise when treating a multispecies gas
�9,10�, as necessary in this work, since we will be dealing
with the bimolecular reversible chemical reaction

A1 + A2 � A3 + A4. �1�

In Eq. �1� each species As is endowed with a mass ms and an
energy of chemical bond Es, and it is conventionally as-
sumed that �E=−�s=1

4 �sEs�0, where the �s constitute the
string of stoichiometric coefficients �1,1 ,−1 ,−1�.

We recall from �3,4� that the space of collision invariants
is seven dimensional, and conserved quantities are mass in
the independent pairs of species �1,3�, �1,4�, �2,4�, momen-
tum and total �kinetic plus chemical� energy. Collision equi-
libria are determined as the seven parameter family of local
Maxwellians

fM
s �v� = ns� ms

2�KT
�3/2

exp�−
ms

2KT
�v − u�2	 s = 1, . . . ,4

�2�

with u and T standing for mass velocity and temperature of
the mixture, and where number densities ns must be related
by the mass action law

n1n2

n3n4 = ��12

�34�3/2
exp��E

KT
� , �3�

in which use has been made of the reduced masses �sr

=msmr / �ms+mr�. K denotes as usual the Boltzmann con-
stant. We can also introduce the H-functional,

H�f�� = �
s=1

4 
 fs�v�log� fs�v�
�ms�3	dv , �4�

and prove that H is a strict Lyapunov functional for stability
of the equilibria given in Eq. �2� �H theorem�.

Some relaxation models for reactive mixtures accounting
for exchange of mass and of energy of chemical link have
already been introduced in the literature �11–13�. In particu-
lar, the latter paper follows the consistent BGK strategy pro-
posed in �10� for inert mixtures, which preserves positivity
and indifferentiability principles, and resorts to a single BGK
collision term for each species s �s=1,2 ,3 ,4�, describing
globally all binary interactions, mechanical �elastic� and
chemical, with whatever other species. The approximate col-
lision operator drifts the distribution function fs toward a
suitable local Maxwellian Ms, characterized by macroscopic
parameters, which are not the actual fields, moments of fs

�number density ns, drift velocity us, and temperature Ts�, but
remain disposable for the purposes of the method. The pro-
posed machinery must rely on the explicit expressions of the
exact Boltzmann exchange rates for mass, momentum, and
energy of each species, which are available only for the col-
lision model of Maxwell-type interactions �14� and in a
physical regime of slow chemical reactions �15�. Within this
domain of applicability, the model in �13� has proved effec-
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tive in investigating classical fluid-dynamic problems such as
space homogeneous relaxation, shock wave structure, and
Riemann problem.

It is clear, however, the need for a relaxation algorithm
that can overcome the above restrictions capable to deal with
general differential cross sections �with possible activation
energy� and suitable for a regime of fast chemistry. In order
to fill up this gap, a different strategy, still along the lines of
�10�, has been proposed in �16�, and numerically applied in
�17,18�. In this paper we intend to proceed further in such
direction by investigating in particular one important aspect
that was left as future work, namely, the hydrodynamic limit
for small collision times of the present BGK equations �in
the present frame, mechanical and chemical collision times
are equally small�. The analysis is based on the extension to
a reactive mixture of the classical asymptotic Chapman-
Enskog expansion, rather heavy already for inert mixtures
�19,20�, pushed up to first-order corrections in order to
achieve �fast� reactive Navier-Stokes equations. This fast re-
active scenario corresponds to the so called “equilibrium”
regime of the classical thermodynamical literature �21�, and
the question of its hydrodynamic limit was addressed in �22�
starting from reactive kinetic equations of Boltzmann type.
Such an approach bears serious mathematical and technical
difficulties related also to the solution of linearized integral
equations with both mechanical and chemical operators.

On the other hand, the problem is of paramount impor-
tance for practical applications since, in many physical re-
gimes, macroscopic-type partial differential equations in-
volving the most meaningful observable quantities are
adequate provided constitutive equations are accurate and re-
liable, and definitely much easier to deal with. In the classi-
cal thermodynamical literature �see for instance �23�� effects
of the chemical reaction taking place in the mixture on trans-
port coefficients are often neglected, and the reactive process
is taken into account by additional contributions in the bal-
ance equations, which might be reaction sources �sinks�, and,
as peculiar in this chemical frame, an extra reactive scalar
pressure �24�. Investigations such as the present one should
then be useful in order to shed light on the above facts. Of
course, it would be desirable that the conclusions of different
theoretical approaches in different physical scenarios could
be validated by experiments, but unfortunately authors are
not aware of results or settings of this kind.

The article is organized as follows. After presenting in
Sec. II the main features of the considered fast BGK model,
the following sections are devoted to a detailed formal
asymptotic analysis of the Chapman-Enskog type leading to
closed macroscopic equations up to the Navier-Stokes level,
which can be compared to analogous results obtained from
BGK equations in the chemically neutral case �10�, or from a
Grad expansion technique for slowly reacting mixtures �25�.
In particular, Sec. III deals with the generalities on the
method and on the zero-order approximation, while Sec. IV
analyzes the first-order corrections with the pertinent consti-
tutive equations. Finally, results are summarized and briefly
commented on in Sec. V.

II. BGK EQUATIONS

We recall and discuss here the main features of the
relaxation-time approximation introduced in �16� for the

chemical reaction model worked out in �3�. Model kinetic
equations read as

� fs

�t
+ v ·

� fs

�x
= �s�Ms − fs� s = 1, . . . ,4, �5�

where Ms are the family of local Maxwellians

Ms�v� = ñs� ms

2�KT̃
�3/2

exp�−
ms

2KT̃
�v − ũ�2	 s = 1, . . . ,4,

�6�

with seven disposable scalar parameters, provided by

ñs , ũ , T̃, bound together by the mass action law

ñ1ñ2

ñ3ñ4 = ��12

�34�3/2
exp��E

KT̃
� �7�

so that, unlike previous models, this collision operator drives
the gas toward a full, mechanical and chemical, equilibrium
as it is appropriate when the two processes proceed at the
same pace. In Eq. �5� the factor �s is the inverse of the sth
relaxation time, possibly depending on macroscopic fields
but independent of v. Here and below macroscopic param-
eters for each species are defined in the usual way, and global
observable fields �including mass density 	, viscosity tensor
p, and heat flux q� are expressed in terms of single compo-
nent parameters by

n = �
s=1

4

ns, 	 = �
s=1

4

msns, u =
1

	
�
s=1

4

msnsus,

nKT = �
s=1

4

nsKTs +
1

3�
s=1

4

	s�uk
suk

s − ukuk� ,

pij = �
s=1

4

pij
s + �

s=1

4

	s��ui
suj

s − uiuj� −
1

3

ij�uk

suk
s − ukuk�	 ,

qi = �
s=1

4

qi
s + �

s=1

4

pij
s �uj

s − uj� +
5

2�
s=1

4

nsKTs�ui
s − ui�

+
1

2�
s=1

4

	s�uk
s − uk��uk

s − uk��ui
s − ui� . �8�

The auxiliary fields ñs , ũ , T̃ in Eqs. �6� and �7� are deter-
mined in terms of the actual fields ns ,us ,Ts by requiring that
the present approximation and the actual Boltzmann descrip-
tion share the same collision invariants. Referring the inter-
ested reader to �17,18� for details and discussion, this leads
to the algebraic system

ñs = ns + �s�1

�s
�ñ1 − n1�, s = 2,3,4,

ũ = �
s=1

4

�sm
snsus��

s=1

4

�sm
sns,
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T̃ =

��
s=1

4

�sn
s�1

2
�sm

s��us�2 − ũ2� +
3

2
KTs+ �1�E�ñ1− n1�

�3

2
K�

s=1

4

�sn
s�

= T̃�ñ1� �9�

so that ũ follows directly from the actual fields, and all other
parameters are cast in terms of the single variable ñ1. The
latter is determined finally by the mass action law, given by
Eq. �7�, which can be written as a transcendental equation

�3�4ñ1��2n2 + �1�ñ1 − n1��
�2��3n3 − �1�ñ1 − n1����4n4 − �1�ñ1 − n1��

exp�−
�E

KT̃�ñ1�
�

= ��12

�34�3/2
, �10�

with T̃�ñ1� defined by Eq. �9�. It can be proved finally by
monotonicity arguments that Eq. �10� admits a unique physi-
cal solution, which guarantees well posedness for the pro-
posed algorithm, working then properly without any restric-
tion on collision model and physical regime.

Conserved quantities coincide with those of the Boltz-
mann collision process and may be chosen as three combi-
nations of number densities such as n1+n3, n1+n4, n2+n4,
the three components of the mass velocity u, and the total
internal �thermal+chemical� energy 3

2nKT+�s=1
4 Esns. Corre-

spondingly, the “exact” set of seven scalar nonclosed macro-
scopic conservation equations

�

�t
�ns + nr� +

�

�x
· �nsus + nrur� = 0

�s,r� = �1,3�,�1,4�,�2,4� ,

�

�t
�	u� +

�

�x
· �	u � u + P� = 0 ,

�

�t
�1

2
	u2 +

3

2
nKT + �

s=1

4

Esns�
+

�

�x
· ��1

2
	u2 +

3

2
nKT + �

s=1

4

Esns�u + P · u + q

+ �
s=1

4

Esns�us − u�	 = 0, �11�

where P=nKTI+p is the pressure tensor, is recovered. In
addition, collision equilibria for this model also coincide
with the correct ones and are provided by the seven param-
eter family of Maxwellians satisfying the mass action law, as
given by Eqs. �2� and �3�. Finally, an outstanding feature of
the present relaxation model is that it allows for an explicit
analytical proof of an H theorem �17�, a result that was miss-
ing in previous reactive BGK models, the H functional being
again given by the same as for the Boltzmann equations,
namely, by Eq. �4�. We only point out here that a crucial role

in the proof is played by Eq. �7�, meaning that, like for an
inert mixture, the attractor is itself, by definition, a collision
equilibrium, from which the Boltzmann inequality easily fol-
lows.

Concerning the most convenient choice of the inverse re-
laxation times �s, which is a problem of minor relevance for
the developments in this paper �though affecting crucially the
final result�, we refer once more to the quoted literature, in
particular to �17�. With the strategy of reproducing the actual
average number of collisions �namely, the total averaged loss
terms� taking place for each species, and for given trends �for
instance, powerlike �26�� of microscopic collision frequen-
cies over their supports, such macroscopic parameters can be
handled analytically. We report here, just for illustration, the
simplest closed form expression, relevant to Maxwell-like
assumption on elastic and exothermic differential cross sec-
tions

�1 = �
s=1

4

�1sn
s + ��34

�12�3/2
exp�−

�E

KT
��34

12n2,

�2 = �
s=1

4

�2sn
s + ��34

�12�3/2
exp�−

�E

KT
��34

12n1,

�3 = �
s=1

4

�3sn
s + �34

12n4,

�4 = �
s=1

4

�4sn
s + �34

12n3, �12�

where �rs and �34
12 are given constants. They show depen-

dence on number densities and temperature, and count elastic
and reactive interactions with equal weight in making up the
macroscopic collision frequencies �s as it is appropriate
when mechanical and chemical processes are equally fast.

III. HYDRODYNAMIC REGIME

Equations �5� may be scaled, measuring all quantities in
terms of some typical values. Using macroscopic scales for
space and time variables and measuring microscopic param-
eters in units of typical values leads to equations which look
exactly the same as Eq. �5� if the same symbol is retained for
dimensionless variables, with only the appearance of the
Knudsen number �, ratio of the microscopic to the macro-
scopic time scales, as

� fs

�t
+ v ·

� fs

�x
=

1

�
�s�Ms − fs� s = 1, . . . ,4, �13�

where the small parameter � tends to zero in the continuum
limit we are interested in. We shall perform a formal
Chapman-Enskog asymptotic analysis to first-order accuracy,
in order to achieve a Navier-Stokes hydrodynamic closure of
the conservation laws given by Eqs. �11�. To this end, the
distribution functions fs are expanded as
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fs = fs�0� + �fs�1�, �14�

and consequently similar expansions hold for ns, us, and Ts.
However, hydrodynamic variables must remain unexpanded
�27�, namely,

ns + nr = ns�0� + nr�0� �s,r� = �1,3�,�1,4�,�2,4� ,

u =
1

	
�
s=1

4

msns�0�us�0�,

3

2
nT + �

s=1

4

Esns =
3

2
nT�0� + �

s=1

4

Esns�0� �15�

�with n=�s=1
4 ns�0� and 	=�s=1

4 msns�0� not expanded either�,
yielding the constraints

n1�1� = n2�1� = − n3�1� = − n4�1� =
3n

2�E
T�1�,

�
s=1

4

msns�0�us�1� + �
s=1

4

msns�1�us�0� = 0 . �16�

Notice that, contrary to classical �nonreactive� gas dynamics,
temperature is not an hydrodynamic field so that it must also
be expanded as T=T�0�+�T�1�. These expansions induce of
course similar expansions for all variables, in particular for
the auxiliary fields and for the Maxwellians Ms. The mac-
roscopic collision frequencies �s, depending on the densities
ns, must be expanded as well. Equating finally equal powers
of � in Eq. �13� yields to leading order

Ms
�0��v� − fs�0��v� = 0, �17�

and to the next order

�s
�0��Ms

�1��v� − fs�1��v�� =
�0fs�0�

�t
+ v ·

� fs�0�

�x
, �18�

where �0 / �t is the first term of a formal expansion of the
time derivative operator, to be considered as an unknown of
the problem.

These are uneasy highly nonlinear integrofunctional equa-
tions for the unknowns fs�i�, since their integral moments are
needed in the definition of the parameters determining the
auxiliary Maxwellians Ms

�i�. However, Eqs. �17� yield, in

cascade, ns�0�= ñs
�0�, us�0�= ũ�0�, Ts�0�= T̃�0�, then the zero-order

mass action law

n1�0�n2�0�

n3�0�n4�0� = ��12

�34�3/2
exp��E

T�0�� . �19�

Notice that all species share, to leading order, the same drift
velocity, equal thus to the global mass velocity u, and the
same temperature, equal to the leading term of the global
temperature T. In conclusion we have

fs�0��v� = ns�0�� ms

2�T�0��3/2
exp�−

ms

2T�0� �v − u�2	 , �20�

for s=1, . . . ,4, with seven free parameters since the ns�0� and
T�0� must be bound together by Eq. �19�. Equations �20� yield
immediately pij

s�0�=0 and qi
s�0�=0 for all s, from which also

pij
�0�=0 and qi

�0�=0 for the leading terms of viscosity tensor
and heat flux.

Before going on to the next step, we can select as un-
knowns for the sought Navier-Stokes-type equations the
seven scalar variables ns�0� ,s=1, . . . ,4, and u, and express
T�0�, wherever needed, by means of Eq. �19�. Conservation
equations may be rewritten as

�

�t
�ns�0� + nr�0�� +

�

�x
· ��ns�0� + nr�0��u�

+ �
�

�x
· �ns�0�us�1� + nr�0�ur�1�� = 0

�s,r� = �1,3�,�1,4�,�2,4� ,

�

�t
�	u� +

�

�x
· �	u � u� +

�

�x
�nT�0��

+ �
�

�x
�nT�1�� + �

�

�x
· p�1� = 0 ,

�

�t
�1

2
	u2 +

3

2
nT�0� + �

s=1

4

Esns�0��
+

�

�x
· ��1

2
	u2 +

5

2
nT�0� + �

s=1

4

Esns�0��u	
+ �

�

�x
· �nT�1�u� + �

�

�x
�p�1� · u� + �

�

�x
· q�1�

+ �
�

�x
· ��

s=1

4

Esns�0�us�1�� = 0, �21�

and their closure is achieved if we are able to determine,
resorting to Eq. �18�, constitutive equations for the quantities
us�1�, T�1�, pij

�1�, and qi
�1�, for which we have further

nT�1� = �
s=1

4

ns�0�Ts�1�, pij
�1� = �

s=1

4

pij
s�1�,

qi
�1� = �

s=1

4

qi
s�1� +

5

2
T�0��

s=1

4

ns�0�ui
s�1�. �22�

IV. FIRST-ORDER CORRECTION

Lengthy but standard manipulations allow to evaluate the
time and space derivatives of fs�0� and to express Ms

�1� as the
derivative of Ms with respect to � at �=0; in this way we
obtain a formal solution of Eq. �18� as
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fs�1� = fs�0�� 1

ns�0� ñ
s�1� +

ms

T�0� ũ
�1� · �v − u� +

1

T�0� T̃
�1�� ms

2T�0� �v − u�2 −
3

2
	 −

1

�s
�0� fs�0�� 1

ns�0�
�0ns�0�

�t
+

ms

T�0�
�0u

�t
· �v − u�

+
1

T�0�
�0T�0�

�t
� ms

2T�0� �v − u�2 −
3

2
	 −

1

�s
�0� fs�0�� 1

ns�0�
�ns�0�

�x
· v +

ms

T�0�
�u

�x
:v � �v − u� +

1

T�0�
�T�0�

�x
· � ms

2T�0� �v − u�2 −
3

2
	v ,

�23�

where ñs�1� , ũ�1� , T̃�1� are the first-order corrections of the aux-
iliary fields as obtained by the asymptotic expansion of the
results following from Eqs. �9� and �10�. After patient ma-
nipulations, the first row in Eq. �9� yields

ñs�1� = ns�1� +
�sJ1

�s
�0� s = 2,3,4, J1 = �1

�0��ñ1�1� − n1�1�� ,

�24�

which gives all auxiliary density corrections in terms of ac-
tual moments and of J1. The second row in Eq. �9� yields
then

ũ�1� = ��
s=1

4

�s
�0�msns�0�	−1��

s=1

4

�s
�0�msns�0�us�1�	 , �25�

expressing auxiliary velocity correction in terms of actual
moments only. The third row in Eq. �9� leads to

T̃�1� = ��
s=1

4

�s
�0�ns�0�	−1��

s=1

4

�s
�0�ns�0�Ts�1� +

2

3
�EJ1	 ,

�26�

and finally Eq. �10� yields, after some algebra,

J1 = − ��
s=1

4
n1�1�

ns�0� +
�E

T0

�
s=1

4

�s
�0�ns�0�Ts�1�

�
s=1

4

�s
�0�ns�0�T�0� �

���s=1

4
1

�s
�0�ns�0� +

2

3

��E/T�0��2

�
s=1

4

�s
�0�ns�0��

−1

. �27�

In this way the distribution functions �23� are cast in terms of
the actual moments ns�1� ,us�1� ,Ts�1� and of the operators
�0 /�t, all still unknown. In order to make their knowledge
effective, and not only formal, we need to recompute the
moments by means of


 fs�1��v�dv = ns�1�, 
 vfs�1��v�dv = ns�1�u + ns�0�us�1�,


 �v − u�2fs�1��v�dv =
3

ms �ns�1�T�0� + ns�0�Ts�1�� , �28�

applying the compatibility conditions following from the
previously established constraints, in order to get rid of the
unknowns �0ns�0� /�t and �0u /�t, whereas �0T�0� /�t is pro-
vided by the zero-order mass action law as

1

T�0�
�0T�0�

�t
= −

T�0�

�E
�
s=1

4
�s

ns�0�
�0ns�0�

�t
. �29�

Skipping technical details, density fields provide the compat-
ibility conditions

�0ns�0�

�t
= −

�

�x
· �ns�0�u� + �sJ1 s = 1, . . . ,4. �30�

Velocity fields yield the compatibility conditions

�0u

�t
= − u ·

�u

�x
−

1

	

�

�x
�nT�0�� �31�

and the algebraic equations

�
r=1

4

sr�0�ur�1� =
�

�x
�ns�0�T�0�� −

	s�0�

	

�

�x
�nT�0��, s = 1, . . . ,4,

�32�

where the singular matrix sr�0� has the form

sr�0� = �s
�0�	s�0�� �r

�0�	r�0�

�
j=1

4

� j
�0�	 j�0�

− 
sr� , �33�

with

�
s=1

4

sr�0� = 0 r = 1, . . . ,4, �
s=1

4

	s�0�us�1� = 0 , �34�

so that the algebraic Eqs. �32� are indeed uniquely solvable.
This set of equations has the same structure as those arising
when the Chapman-Enskog algorithm is applied to the either
Grad 13-moment approximation of the reactive Boltzmann
equations �25�, or to the BGK model equations in the chemi-
cally neutral version �10�. It is remarkable however that the
present matrix accounts for both mechanical and chemical
encounters via the inverse relaxation times �s

�0�, whereas in
the slow reactive frame only the mechanical collision fre-
quencies were involved. In any case the solution, mutatis
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mutandis, goes through the same steps of either �10� or �25�
and may be cast as

us�1� = − �
r=1

4

Lsr�0� 1

	s�0�	r�0�
�

�x
�nr�0�T�0�� �35�

where Lsr�0� is a suitable �singular� matrix, depending on the
densities ns�0�, which can be proved to be symmetric �10�,
reproducing thus the Onsager relations �28�.

Finally, temperature fields recomputed from Eq. �23� yield
a set of linear algebraic equations for the Ts�1� with matrix
coefficients

�sr�0� = �s
�0�ns�0�� �r

�0�nr�0�

�
j=1

4

� j
�0�nj�0�

− 
sr� , �36�

which make up again a singular matrix of the same structure
as Eq. �33�. Now a compatibility condition must be applied
to the inhomogeneous terms of the algebraic system. Taking
into account that Eq. �19� implies

1

T�0�
�T�0�

�xi
= −

T�0�

�E
�
s=1

4
�s

ns�0�
�ns�0�

�xi
, �37�

a little algebra yields

J1 = �nT�0�

�E

�

�x
· u��1 +

3

2
n�T�0�

�E
�2

�
s=1

4
1

ns�0�	−1

. �38�

Now, starting from

nT�1� =
1

3�
s=1

4

ms
 �v − u�2fs�1��v�dv , �39�

it is matter of some simple manipulations to show that T�1�

can be cast in terms of zero–order moments and J1 only so
that, on using Eq. �38�, we are led to the explicit expression

T�1� = −
2

3
T�0�

1

n
�
s=1

4
ns�0�

�s
�0� +

3

2
n�T�0�

�E
�2

�
s=1

4
1

�s
�0�ns�0�

�1 +
3

2
n�T�0�

�E
�2

�
s=1

4
1

ns�0�	2

�

�x
· u .

�40�

It is interesting to remark that this correction is specific of
reactive mixtures �29� and is not present in any inert prob-
lem.

In principle, the procedure is so completed since now we
could solve uniquely the algebraic equations for Ts�1� and
obtain all first-order corrections, actual and fictitious, in
terms of the chosen hydrodynamic variables and their gradi-
ents so that the distribution functions �23� would be fully
explicit. We shall not do that since it suffices to compute the
viscous stress pij

�1� and the heat flux qi
�1� by suitable integra-

tion of the distribution functions in order to close the mac-
roscopic Eqs. �21� and to achieve the sought Navier-Stokes
equations.

For that purpose we have

Pij
s�1� = ms


R3
�vi − ui��v j − uj�fs�1��v�dv,

pij
s�1� = Pij

s�1� − 
ij
1

3
tr Ps�1� �41�

and

qi
s�1� = −

5

2
T�0�ns�0�ui

s�1� +
1

2
ms


R3
�vi − ui��v − u�2fs�1�dv

�42�

to be used then in Eqs. �22�. When computing Pij
s�1�, it is not

difficult to check that the addends of fs�1� involving the first
curly brackets of Eq. �23� yield a tensor proportional to the
identity, which contributes nothing to the deviatoric part
pij

s�1�, and the same occurs to the addends from the second
curly brackets, involving the �0 / �t operator. For the third
curly brackets, involving spatial gradients, the same feature
is in order for the gradients of ns�0� and T�0�, whereas the rate
of strain tensor contributes a term

−
ns�0�T�0�

�s
�0� �
ij�2

�ui

�xi
+

�

�x
· u� + �1 − 
ij�� �ui

�xj
+

�uj

�xi
�	 ,

�43�

where the square bracket is the sum of
�ui

�xj
+

�uj

�xi
and of an

isotropic tensor. Going on and computing pij
s�1� and pij

�1�, one
ends up with

pij
�1� = − T�0��

s=1

4
ns�0�

�s
�0� � �ui

�xj
+

�uj

�xi
−

2

3

�

�x
· u
ij� . �44�

This Newtonian constitutive equation corresponds to a vis-
cosity coefficient

� = T�0��
s=1

4
ns�0�

�s
�0� , �45�

formally the same obtained in �10� from the BGK equations
for a chemically neutral gas mixture. An expression of the
same type was obtained for the slow reactive case in �25� by
the Grad method but with a different viscosity coefficient
that was provided there by a formal inversion of suitable
matrices. Passing to Eq. �42�, we may split fs�1� in three
different addends as before and evaluate separately the rel-
evant contributions. Skipping details and putting together all
terms there results

qi
s�1� = −

5

2

ns�0�T�0�

�s
�0� � �0ui

�t
+ u ·

�ui

�x
+

1

	s�0�
�

�xi
�ns�0�T�0��	

−
5

2

ns�0�T�0�

ms�s
�0�

�T�0�

�xi
+

5

2
T�0�ns�0��ũi

�1� − ui
s�1�� , �46�

and upon using Eq. �25� for ũi
�1� and Eqs. �31� and �32� for

the square bracket, we end up simply with
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qi
s�1� = −

5

2
T�0� ns�0�

ms�s
�0�

�T�0�

�xi
. �47�

In conclusion, from the last of Eqs. �22�,

qi
�1� = −

5

2
T�0��

s=1

4
ns�0�

ms�s
�0�

�T�0�

�xi
+

5

2
T�0��

s=1

4

ns�0�ui
s�1�, �48�

a Fourier conduction law with a thermal conductivity

� =
5

2
T�0��

s=1

4
ns�0�

ms�s
�0� . �49�

Again this result coincides formally with the corresponding
one for the same BGK strategy applied to a nonreactive mix-

ture �10�, and reproduces the structure of heat flux for the
slow reactive case as obtained by the Grad method �25�, only
with a different conductivity, which is explicitly given here,
whereas requires the inversion of certain matrices there.

V. COMMENTS AND CONCLUSIONS

Summarizing our results, hydrodynamic equations of
Navier-Stokes type for the present relaxation model of the
chemical reaction described by Eq. �1� are provided by Eqs.
�21�, a set of seven partial differential equations for the seven
scalar unknowns ns�0� and u, coupled to the transcendental
algebraic Eq. �19� for T�0�, and to the proper constitutive
equations, namely Eqs. �35� for ui

s�1�, Eq. �40� for T�1�, Eq.
�44� for pij

�1�, and Eq. �48� for qi
�1�. All together, they read as

�

�t
�ns�0� + nr�0�� +

�

�x
· ��ns�0� + nr�0��u� + �

�

�x
· �ns�0�us�1� + nr�0�ur�1�� = 0,

�s,r� = �1,3�,�1,4�,�2,4� ,

�

�t
�	u� +

�

�x
· �	u � u� +

�

�x
�nT�0�� + �

�

�x
�nT�1�� + �

�

�x
· p�1� = 0 ,

�

�t
�1

2
	u2 +

3

2
nT�0� + �

s=1

4

Esns�0�� +
�

�x
· ��1

2
	u2 +

5

2
nT�0� + �

s=1

4

Esns�0��u	
+ �

�

�x
· �nT�1�u� + �

�

�x
�p�1� · u� + �

�

�x
· q�1� + �

�

�x
· ��

s=1

4

Esns�0�us�1�� = 0,

n1�0�n2�0�

n3�0�n4�0� = ��12

�34�3/2
exp��E

T�0�� ,

us�1� = − �
r=1

4

Lsr�0� 1

	s�0�	r�0�
�

�x
�nr�0�T�0�� ,

T�1� = −
2

3
T�0�

1

n
�
s=1

4
ns�0�

�s
�0� +

3

2
n�T�0�

�E
�2

�
s=1

4
1

�s
�0�ns�0�

�1 +
3

2
n�T�0�

�E
�2

�
s=1

4
1

ns�0�	2

�

�x
· u ,

pij
�1� = − T�0��

s=1

4
ns�0�

�s
�0� � �ui

�xj
+

�uj

�xi
−

2

3

�

�x
· u
ij� ,

qi
�1� = −

5

2
T�0��

s=1

4
ns�0�

ms�s
�0�

�T�0�

�xi
+

5

2
T�0��

s=1

4

ns�0�ui
s�1�. �50�

KINETIC BHATNAGAR-GROSS-KROOK MODEL FOR FAST … PHYSICAL REVIEW E 81, 036327 �2010�

036327-7



Euler equations correspond to the limiting case �=0.
The present BGK asymptotic limit differs substantially

from the BGK asymptotic limit that would be in order if the
chemical reaction were switched off, that was thoroughly
derived and discussed in �10�, as well as from the Grad
asymptotic limit for a slowly reactive mixture, worked out in
�25�. In those cases in fact the kernel of the collision operator
is eight dimensional, and all densities, as well as the tem-
perature, are hydrodynamic variables so that Navier-Stokes
equations are made up by eight partial differential equations,
including continuity equations for each species. The slow
reactive case includes an additional chemical source term,
but transport coefficients are determined only by mechanical
collision parameters. The present reactive Navier-Stokes
equations are made up by seven partial differential equations
for seven unknowns, with only three pairwise coupled con-
tinuity equations for the species, and with temperature fol-
lowing from the actual unknowns by means of the mass ac-
tion law, indicating an evolution close to the chemical
equilibrium. Therefore one should look at Eqs. �50� in a dif-
ferent way since all temperature gradients in both differential
and constitutive equations must be restated in terms of den-
sity gradients, resorting to Eq. �37�. From a different point of
view, one could deal with the eight usual observable fields
and consider these Navier-Stokes equations as a closed set of
differential-algebraic equations. Transport coefficients under-
lying the constitutive equations for diffusion velocities, vis-
cous stress, and heat flux are formally, mutatis mutandis, the
classical ones from the nonreactive Boltzmann equations
�22�, but the matrix Lsr�0�, the viscosity coefficient �, and the
thermal conductivity � are built up in terms of the macro-
scopic collision frequencies �s

�0�, which account for not only
elastic scattering, but also reactive collisions since

�1
�0� = �

s=1

4

�1sn
s�0� + ��34

�12�3/2
exp�−

�E

T�0���34
12n2�0�,

�2
�0� = �

s=1

4

�2sn
s�0� + ��34

�12�3/2
exp�−

�E

T�0���34
12n1�0�,

�3
�0� = �

s=1

4

�3sn
s�0� + �34

12n4�0�,

�4
�0� = �

s=1

4

�4sn
s�0� + �34

12n3�0� �51�

so that chemical reactions do affect the hydrodynamic clo-
sure and the transport coefficients themselves. Notice that,
for slow chemistry, reactive collision parameters �namely, in
the approximation introduced by Eqs. �12�, the microscopic
collision frequency �34

12� would be one order of magnitude
smaller �in units of �� than the mechanical ones so that the
leading terms �s

�0� would include only elastic scattering, lead-
ing back to a scenario closer to �25�. This indicates that
neglecting effects of the chemical reaction on diffusion, vis-
cosity, and conductivity coefficients can be regarded as a
reasonable approximation when the reaction is slow but
would not be consistent when the reaction is fast. On the
other hand, this is in agreement with physical expectation
and is confirmed also by other theoretical approaches, such
as for instance those of Refs. �30,31�. In these papers explicit
reaction-dependent expressions for transport coefficients
have been derived either by a truncated Sonine polynomial
expansion for a binary mixture �in the former� or by approxi-
mating some collision integrals in terms of suitable “input”
functions �in the latter�. The effects of chemical reactions are
also accounted for, in agreement with heuristic and thermo-
dynamical considerations, by an additional reactive scalar
pressure nT�1� �29�, involving the divergence of mass veloc-
ity, instead of an additional chemical source term of alge-
braic type that would be typical for slow reactions �25�. The
present analysis shows how this experimentally observed
chemical pressure comes into the picture by a mathematical
requirement since, in the present fast reactive frame, the gas
temperature is not a conserved quantity. In fact, only the total
energy, involving a chemical contribution in addition to the
thermal one, is conserved by the dominant operator driving
the overall evolution, and therefore also a first-order correc-
tion to the temperature must be considered in the asymptotic
scheme and evaluated in terms of the chosen macroscopic
fields. Clearly, if the reaction were switched off, we would
be led back to the constitutive equations of the inert BGK
hydrodynamic limit �10�; in this respect, as typical in kinetic
theory, viscosity, and conductivity are expressed in closed
form if derived from a BGK level description, contrary to the
more complicated implicit expressions obtained from the
Boltzmann or Grad level �25�.
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